My-library.info
Все категории

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира. Жанр: Прочая научная литература издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
192
Читать онлайн
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира краткое содержание

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира читать онлайн бесплатно

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - читать книгу онлайн бесплатно, автор Шон Кэрролл

Чтобы понять, что такое темная материя, давайте подумаем, откуда она взялась. Представьте, что у вас есть экспериментальный аппарат, построенный на базе суперпечи, то есть закрытый ящик с каким-то веществом внутри, и к нему приделана ручка, с помощью которой можно выставить какую угодно температуру – от самой высокой до самой низкой. Температура в обычной печи достигает, как правило, 250 °С, что в обычных единицах физики элементарных частиц составляет около 0,04 электронвольт. При этой температуре молекулы могут перестроиться (в быту это называется «печь пирог»), но атомы еще сохраняют свою целостность. Как только мы доведем температуру до нескольких электронвольт или выше, электроны оторвутся от своих ядер. Когда мы доведем температуру до миллионов электронвольт (МэВ), ядра сами разорвутся на куски, и образуются свободные протоны и нейтроны.

При высоких температурах происходят и другие важные процессы: столкновения между частицами становятся столь энергичными, что образуются новые пары частица-античастица – подобно тому, как это происходит в коллайдере частиц. Считается, что когда температура становится выше общей массы пары частица-античастица, такие пары будут производиться в большом количестве. А при достаточно высоких температурах уже почти не имеет значения, что было в печи в первый момент, и горячая плазма образуется всеми частицами с меньшими, чем температура печи, массами. (Напомним, что и масса, и температура могут выражаться в ГэВ.) Если же температура достигнет 500 ГэВ, наш ящик уже просто загудит от заполняющих его бозонов Хиггса, кварков и лептонов всех видов, W– и Z-бозонов и прочих частиц – не говоря уже о возможных новых частицах, которые еще не обнаружены здесь, на Земле. Если бы мы начали постепенно снижать температуру внутри этого ящика, эти новые частицы постепенно стали бы исчезать, врезаясь в свои античастицы и аннигилируя, и у нас остались бы только те частицы, с которых мы начали.

Ранняя Вселенная очень похожа на плазму внутри нашей сверхгорячей печи, только с еще одним существенным свойством: пространство тогда расширялось с невероятной скоростью. Расширение пространства приводит к двум важным следствиям. Во-первых, оно при этом остывает, как будто регулятор температуры нашей печи сначала был выставлен на максимум, а потом его быстро повернули в обратном направлении. Во-вторых, плотность вещества быстро убывает, поскольку частицы в расширяющемся пространстве удаляются друг от друга. Последнее – главное различие между ранней Вселенной и печью. Из-за уменьшения плотности часть частиц, которые родились в плазме вначале, могут не получить шанса аннигилировать – слишком трудно будет найти соответствующую анти частицу.

В результате мы получаем избыток таких частиц – реликтов первичной плазмы. И если мы знаем массы частиц и вероятности, с которыми они взаимодействуют, мы сможем точно рассчитать, каким этот избыток должен быть. Если частицы нестабильны, как, например, бозон Хиггса, об их избытке в реликтовом излучении ничего сказать нельзя, поскольку эти частицы просто разваливаются. Но если они стабильны, мы должны заняться их изучением. Некоторые ученые полагают, что оставшиеся от ранней Вселенной стабильные частицы и составляют теперешнюю темную материю.

В рамках Стандартной модели мы можем примерно те же рассуждения применить к атомным ядрам. Одно ключевое различие состоит в том, что вначале мы имеем больше вещества, чем антивещества, так что материя никогда полностью не проаннигилирует. Начнем с довольно высокой температуры, скажем примерно с 1 ГэВ. При этой температуре плазма будет состоять из протонов, нейтронов, электронов, фотонов и нейтрино – все более тяжелые частицы распадутся. Эта температура достаточно высока для того, чтобы протоны и нейтроны не образовывали ядра, поскольку те бы мгновенно разорвались. Но так как Вселенная расширяется и охлаждается, уже через несколько секунд после Большого взрыва ядра начнут формироваться. Еще пару минут спустя плотность окажется настолько низкой, что ядра перестанут сталкиваться друг с другом, и эти реакции прекратятся. У нас останутся определенные комбинации протонов и легких элементов – дейтерия (тяжелого водорода, в котором один протон и один нейтрон), гелия и лития. Этот процесс известен как «нуклеосинтез Большого взрыва».

Мы можем сделать точные расчеты относительного избытка этих элементов, введя только один входной параметр – начальный избыток протонов и нейтронов. И тогда мы сравним избытки первичных элементов с тем, что мы видим в реальной Вселенной. Результаты находятся в точном соответствии, но только для одной конкретной плотности протонов и нейтронов. Это замечательный результат, и он обнадеживает, поскольку означает, что мы довольно верно представляем себе раннюю Вселенную. Поскольку протоны и нейтроны составляют подавляющую часть массы в обычной материи, мы знаем достаточно хорошо, сколько обычной материи во Вселенной, в какой бы форме она сегодня ни существовала. И ее совсем не хватает, чтобы объяснить всю материю, которая имеется во Вселенной.

Вимпы

Для расчета массы темной материи можно использовать, например, ту же стратегию, вернее, поиграть в ту же игру, в которую мы играли с нуклеосинтезом, только начать надо с гораздо более высокой температуры и добавить в смесь новую частицу, которая потом станет темной материей. Мы знаем, что темная материя темная, поэтому новая частица должна быть электрически нейтральной. (Заряженные частицы взаимодействуют с электромагнитным полем и, следовательно, испускают свет.) Кроме того, мы знаем, что она и сейчас присутствует везде во Вселенной, поэтому она стабильна, или по крайней мере ее время жизни больше, чем возраст Вселенной. Мы знаем про нее и еще кое-что: темная материя не очень сильно взаимодействует сама с собой. Если бы это было не так, она бы обосновалась в центрах галактик, а не образовывала большие раздутые ореолы, которые, как нам кажется, регистрируются при наблюдениях. А это значит, что темная материя не чувствует и сильное ядерное взаимодействие. Из известных сил природы темная материя, конечно, реагирует на силу тяжести, и, вероятно, чувствует (или не чувствует) действие слабых ядерных сил.

Давайте представим себе особый вид новых частиц – «слабо взаимодействующие массивные частицы» или, как их называют, – WIMPS, по-русски вимпы. (Космологи становятся необыкновенно остроумными, когда дело доходит до изобретения новых имен[13].) Под «слабо взаимодействующими» мы подразумеваем не то, что они «взаимодействуют не очень сильно», а то, что они чувствуют слабые взаимодействия. Для простоты будем считать, что вимп имеет массу, сопоставимую с массами других частиц, участвующих в слабых взаимодействиях, например W– и Z-бозонов или бозона Хиггса, то есть примерно 100 ГэВ или по крайней мере в интервале от 10 до 1000 ГэВ. Этого достаточно для весьма грубых прикидок, а чтобы понять лучше, как взаимодействуют частицы, нужно проводить высокоточных расчеты.

После этого мы сравним получающийся из расчетов избыток таких вимпов с реальной массой темной материи. Поразительный результат: мы получаем значение, отлично совпадающее с наблюдениями! В этом расчете есть некоторые свободные параметры, связанные как с тем, что могут существовать другие частицы, так и с конкретным способом, которым вимпы могут аннигилировать, но и при таком грубом полходе полученное совпадение поражает: оценка избытка стабильных частиц в реликтовом излучении, подверженных слабым взаимодействиям, в принципе соответствует реальной величине массы темной материи.

Это интересное совпадение известно как «чудо-вимпы», и оно дало многим физикам надежду, что секрет темной материи заключается в новых частицах с массами и взаимодействиями, похожими на соответствующие свойства W– и Z-бозонов и бозона Хиггса. Все эти бозоны, конечно, быстро распадаются, и у вимпов должны быть хорошие причины, чтобы в отличие от них быть стабильными, но их, эти причины, не трудно придумать. Есть много других правдоподобных версий состава темной материи – в том числе из частиц под названием «аксион», придуманных Стивеном Вайнбергом и Фрэнком Вильчеком, – очень легких кузенов бозона Хиггса. Но на сегодняшний день модель вимпов является самой популярной.

Если темная материя состоит из вимпов, то перед учеными открываются некоторые очень интересные экспериментальные возможности, поскольку бозон Хиггса должен взаимодействовать с этими частицами. Во многих правдоподобных моделях темной материи, состоящей из вимпов, самое сильное взаимодействие между темной материей и обычным веществом осуществляется путем обмена бозонами Хиггса. Хиггс может быть связующим звеном между нашим миром и темной материей, составляющей большую часть материи во Вселенной.


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира отзывы

Отзывы читателей о книге Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.